Product Description
High Quality Multiple Types/Size Flexible Coupling, Rubber Shaft Coupling 155*76 16A Replacement of Many Types of machine excavator
Our main products:
steel cover lock, filter, oil grid, pump, cylinder head, crankshaft, camshaft, connecting rod, connecting rod bearing, valve, plunger, nozzle, exhaust valve, engine assembly, intake pump , fan blade, engine preheater, radiator, intake valve, main bearing, crankshaft bearing, nozzle, nozzle pipe, oil pump, piston, piston pin, piston ring, plunger, valve seat, thrust bearing, valve guide, valve Seats, valve seals, gasket sets, water pumps, turbochargers, generators, starters, sensors…
Please click here>>>>Contact us for more factory price,shipping and discounts
ENGINE CUSHION | ||||||||||||||
NO. | LB NO. | Model | OEM NO. | Name | NO. | LB NO. | Model | OEM NO. | Name | NO. | LB NO. | Model | OEM NO. | Name |
1 | KLB-Q3001 | PC40 | 105*53*10 | ENGINE CUSHION | 15 | KLB-Q3015 | E312 FRONT |
95*28*16 | ENGINE CUSHION | 29 | KLB-Q3571 | SK230 | 90*45*21 | ENGINE CUSHION |
2 | KLB-Q3002 | PC120-6 4D102 | 82*46*18 | ENGINE CUSHION | 16 | KLB-Q3016 | EX312 REAR |
95*29*17 | ENGINE CUSHION | 30 | KLB-Q3030 | HD250 | 59*31*13 | ENGINE CUSHION |
3 | KLB-Q3003 | PC200-3 | 124*68*45 205-01-71111 |
ENGINE CUSHION | 17 | KLB-Q3017 | ZAX230 FRONT |
95*28*16 | ENGINE CUSHION | 31 | KLB-Q3031 | HD450 FRONT |
97*15*19 | ENGINE CUSHION |
4 | KLB-Q3004 | PC200-5/6 FRONT |
80*46*19 20Y-01-12210 |
ENGINE CUSHION | 18 | KLB-Q3018 | E320B | 110*40*22 | ENGINE CUSHION | 32 | KLB-Q3032 | HD450 REAR |
118*36*19 | ENGINE CUSHION |
5 | KLB-Q3005 | PC200-5 REAR |
130*73*25 20Y-01-12221 |
ENGINE CUSHION | 19 | KLB-Q3019 | E330B | 136*44*25 | ENGINE CUSHION | 33 | KLB-Q3033 | LS120 | 87*42*17 | ENGINE CUSHION |
6 | KLB-Q3006 | PC200-6 6D102 |
20Y-01-12222 | ENGINE CUSHION | 20 | KLB-Q3571 | DH220-3 FRONT |
68*70*12 | ENGINE CUSHION | 34 | KLB-Q3034 | LS280 FRONT |
86*23*16 | ENGINE CUSHION |
7 | KLB-Q3007 | EX200 | ENGINE CUSHION | 21 | KLB-Q3571 | DH220-3 REAR |
110*105*14 | ENGINE CUSHION | 35 | KLB-Q3035 | LS280 REAR |
96*25*16 | ENGINE CUSHION | |
8 | KLB-Q3008 | EX200-5 REAR |
167*110*14 | ENGINE CUSHION | 22 | KLB-Q3571 | DH220-5 | 104*74*19 | ENGINE CUSHION | 36 | KLB-Q3036 | SH60 SH65 |
120*110*12 | ENGINE CUSHION |
9 | KLB-Q3009 | EX200-6 REAR |
175*135*16 | ENGINE CUSHION | 23 | KLB-Q3571 | DH280 FRONT |
165*200*16 | ENGINE CUSHION | 37 | KLB-Q3037 | 6D22 FRONT |
70*35*21 | ENGINE CUSHION |
10 | KLB-Q3571 | EX200 FRONT |
120*155*14 | ENGINE CUSHION | 24 | KLB-Q3571 | DH280 REAR |
200*110*20 | ENGINE CUSHION | 38 | KLB-Q3038 | 6D22 REAR |
95*41*22 | ENGINE CUSHION |
11 | KLB-Q3011 | EX200 REAR |
165*105*14 | ENGINE CUSHION | 25 | KLB-Q3571 | SK60 FRONT |
98*103*12 | ENGINE CUSHION | 39 | KLB-Q3039 | DH55 FRONT |
100*48*17 | ENGINE CUSHION |
12 | KLB-Q3012 | EX200 | 126*100*11 | ENGINE CUSHION | 26 | KLB-Q3026 | SK60 REAR |
98*103*16 | ENGINE CUSHION | 40 | KLB-Q3040 | SH200A3 | 137*160*16 | ENGINE CUSHION |
13 | KLB-Q3013 | EX300 FRONT |
87*35*20 | ENGINE CUSHION | 27 | KLB-Q3571 | SK120 FRONT |
100*15*19 | ENGINE CUSHION | |||||
14 | KLB-Q3014 | EX300 REAR |
110*39*22 | ENGINE CUSHION | 28 | KLB-Q3571 | SK120 FEAR |
100*47*19 | ENGINE CUSHION |
COUPLING | ||||||||||||||
NO. | LB NO. | Model | OEM NO. | Name | NO. | LB NO. | Model | OEM NO. | Name | NO. | LB NO. | Model | OEM NO. | Name |
1 | KLB-Q2001 | 25H 162*92 | COUPLING | 22 | KLB-Q2571 | 16A | 155*76 | COUPLING | 43 | KLB-Q2043 | S32S | 235*97 | COUPLING | |
2 | KLB-Q2002 | MS110 DH55 | 30H 195*105 | COUPLING | 23 | KLB-Q2571 | 16AS | 155*76 | COUPLING | 44 | KLB-Q2044 | S25S | 163*58 | COUPLING |
3 | KLB-Q2003 | 30H | 195*105 | COUPLING ASSY | 24 | KLB-Q2571 | 22A | 153*76 | COUPLING | 45 | KLB-Q2045 | E200B | 14T | COUPLING |
4 | KLB-Q2004 | EX200-2 | 40H 170*90 | COUPLING | 25 | KLB-Q2571 | 25A | 185*102 | COUPLING | 46 | KLB-Q2046 | 50AC | 14T 205*40 | COUPLING |
5 | KLB-Q2005 | 40H | 170*90 | COUPLING ASSY | 26 | KLB-Q2026 | 25AS | 185*102 | COUPLING | 47 | KLB-Q2047 | SH280 | COUPLING | |
6 | KLB-Q2006 | 45H | 183*92 | COUPLING | 27 | KLB-Q2571 | 28A | 178*93 | COUPLING | 48 | KLB-Q2048 | E200B 12T | COUPLING | |
7 | KLB-Q2007 | 45H | 183*92 | COUPLING ASSY | 28 | KLB-Q2571 | 28AS | 178*93 | COUPLING | 49 | KLB-Q2049 | 50AM 16T | 205*45 | COUPLING |
8 | KLB-Q2008 | 90H | 203*107 | COUPLING | 29 | KLB-Q2571 | 30A | 215*118 | COUPLING | 50 | KLB-Q2050 | SH200 | 14T 205*40 | COUPLING |
9 | KLB-Q2009 | 90H | 203*107 | COUPLING ASSY | 30 | KLB-Q2030 | 30AS | 215*118 | COUPLING | 51 | KLB-Q2051 | E330C | 350*145 | COUPLING |
10 | KLB-Q2571 | 50H | 195*110 | COUPLING | 31 | KLB-Q2031 | 50A | 205*108 | COUPLING | 52 | KLB-Q2052 | E330C | COUPLING | |
11 | KLB-Q2011 | 50H | 195*110 | COUPLING ASSY | 32 | KLB-Q2032 | 50AS | 205*108 | COUPLING | 53 | KLB-Q2053 | 168mm*48m 26T 3H | COUPLING | |
12 | KLB-Q2012 | 110H | 215*110 | COUPLING | 33 | KLB-Q2033 | 90A | 272*140 | COUPLING | 54 | KLB-Q2054 | 242mm*72mm 50T 8H | COUPLING | |
13 | KLB-Q2013 | 110H | 215*110 | COUPLING ASSY | 34 | KLB-Q2034 | 90AS | 272*140 | COUPLING | 55 | KLB-Q2055 | 295mm*161mm 48T 12H | COUPLING | |
14 | KLB-Q2014 | 140H | 245*125 | COUPLING | 35 | KLB-Q2035 | 140A | 262*132 | COUPLING | 56 | KLB-Q2056 | 352mm*161mm 48T 8H | COUPLING | |
15 | KLB-Q2015 | 140H | 245*125 | COUPLING ASSY | 36 | KLB-Q2036 | 140AS | 262*132 | COUPLING | 57 | KLB-Q2057 | 352mm*161mm 46T 8H | COUPLING | |
16 | KLB-Q2016 | 160H | 255*134 | COUPLING | 37 | KLB-Q2037 | E300B | 16T 278*54 | COUPLING | 58 | KLB-Q2058 | 318mm*72mm 50T 8H | COUPLING | |
17 | KLB-Q2017 | 160H | 255*134 | COUPLING ASSY | 38 | KLB-Q2038 | E450 | 16T 360*52 | COUPLING | 59 | KLB-Q2059 | 315mm 42T | COUPLING | |
18 | KLB-Q2018 | 4A | 104*53 | COUPLING | 39 | KLB-Q2039 | SH430 | 12T 205*35 | COUPLING | 60 | KLB-Q2060 | 268mm*100mm 42T 6H | COUPLING | |
19 | KLB-Q2019 | 4AS | 104*53 | COUPLING | 40 | KLB-Q2040 | SH200 | 14T 205*40 | COUPLING | 61 | KLB-Q2061 | 167mm*90mm 47T 3H | COUPLING | |
20 | KLB-Q2571 | 8A | 130*70 | COUPLING | 41 | KLB-Q2041 | 50ASM | 20T 205*40 | COUPLING | 62 | KLB-Q2062 | 182mm 42T | COUPLING | |
21 | KLB-Q2571 | 8AS | 130*70 | COUPLING | 42 | KLB-Q2042 | SH160(SH60) | 15T 173*22 | COUPLING | 63 | KLB-Q2063 | 220mm 46T | COUPLING |
1Q:What is your brand?
1A:Our own brand: Mita Group and its range of excavator parts.
2Q:Do you have your own factory? Can we have a visit?
2A:Absolutely, you are alwayswelcome to visit our factory.
3Q:How do you control the quality of the products?
3A:Our factory was obtained the ISO9001CERTIFICATE.Every process of the production is strictly controlled. And all products will be inspected by QC before shipment.
4Q:How long is the delivery time?
4A:2 to 7 days for ex-stock orders. 15 to 30 days for production.
5Q:Can we print our company logo onproduct and package?
5A:Yes, but the quantity of the order is required. And we need you to offer the Trademark Authorization to us.
6Q:Can you provide OEM BRAND package?
6A:Sorry, we can only offer our company ACT BRAND package or neutral packing,blank package ifyou need, and the Buyers’ Brand as authorized.7Q:How long is the warranty period?7A:3 months
Can flexible couplings accommodate variable operating conditions and loads?
Yes, flexible couplings are designed to accommodate variable operating conditions and loads in mechanical systems. They offer several features that allow them to adapt to changing conditions and handle different loads effectively. Below are the reasons why flexible couplings are well-suited for such applications:
Misalignment Compensation: Flexible couplings can handle misalignment between shafts, including angular, parallel, and axial misalignment. This capability allows them to accommodate slight shifts in shaft positions that may occur due to thermal expansion, vibration, or other factors, ensuring smooth operation even in changing conditions.
Shock and Vibration Absorption: Flexible couplings can dampen shocks and vibrations that result from sudden changes in load or operating conditions. The flexible element in the coupling acts as a buffer, absorbing and reducing the impact of sudden loads or transient forces, protecting connected equipment and increasing system reliability.
Variable Load Capacity: Flexible couplings come in various designs and materials, each with its load capacity range. Manufacturers provide different coupling models with varying load capacities to accommodate different applications. Properly selecting the right coupling for the specific load conditions ensures reliable power transmission even under varying loads.
Compensation for Thermal Expansion: Temperature changes can cause thermal expansion in mechanical systems, leading to shaft misalignment. Flexible couplings can handle the resulting misalignment, compensating for thermal expansion and ensuring continuous and smooth power transmission.
Torsional Stiffness: Flexible couplings are designed with a balance between flexibility and torsional stiffness. This property allows them to adapt to variable loads while still providing the necessary rigidity for efficient power transmission.
Durable Materials and Designs: Manufacturers produce flexible couplings from durable materials like stainless steel, aluminum, or engineered elastomers. These materials ensure that the couplings can withstand varying operating conditions, including temperature fluctuations, harsh environments, and high loads.
Dynamic Behavior: Flexible couplings have a dynamic behavior that enables them to operate smoothly and efficiently under changing loads and speeds. They can handle variations in rotational speed and torque while maintaining consistent performance.
Application Flexibility: Flexible couplings find applications in a wide range of industries, from automotive and aerospace to industrial and marine. Their versatility allows them to accommodate variable operating conditions and loads in different systems.
Summary: Flexible couplings are well-suited for applications with variable operating conditions and loads. Their ability to compensate for misalignment, absorb shocks and vibrations, and handle thermal expansion make them reliable components in mechanical systems. The availability of various coupling designs and materials allows for the selection of the appropriate coupling based on the specific application requirements, ensuring optimal performance and longevity in variable conditions.
How does a flexible coupling help in torque and rotational speed control?
A flexible coupling plays a crucial role in torque and rotational speed control in rotating machinery. It offers several benefits that contribute to efficient power transmission and help maintain desired operating conditions:
- Torque Transmission: Flexible couplings transmit torque from one shaft to another while accommodating misalignments. They provide a reliable connection that allows the driving shaft to transfer rotational force (torque) to the driven shaft without causing undue stress on the connected components.
- Smooth Power Transmission: Flexible couplings help reduce shocks and vibrations that can occur during startup, shutdown, or sudden load changes. By damping these vibrations, the coupling ensures smooth power transmission and protects the connected equipment from unnecessary wear.
- Rotational Speed Control: In certain applications, especially those involving precision motion control, maintaining consistent rotational speed is critical. Flexible couplings can help by minimizing backlash and torsional wind-up. Backlash refers to the play or gap between the coupling’s components, while torsional wind-up is the twisting deformation that can occur under torque load. Flexible couplings with low backlash and high torsional stiffness contribute to accurate rotational speed control.
- Compensation for Misalignment: Rotating machinery may experience misalignment due to various factors such as thermal expansion, foundation settling, or machining tolerances. Flexible couplings accommodate angular, parallel, and axial misalignments, which helps in maintaining proper alignment between the shafts and reduces unnecessary torque variations.
- Protection from Overloads: Flexible couplings can act as a mechanical fuse by disengaging or slipping when subjected to excessive torque loads. This feature protects the connected components from damage caused by sudden overloads or jamming events.
- Energy Efficiency: Certain types of flexible couplings, such as elastomeric couplings or beam couplings, have low mass and inertia. This characteristic reduces energy losses and contributes to overall system efficiency.
By providing reliable torque transmission, smooth power transfer, rotational speed control, and compensation for misalignment, flexible couplings optimize the performance and longevity of rotating machinery. Additionally, they enhance the safety and efficiency of various industrial processes by protecting equipment from excessive loads and ensuring smooth operation in diverse applications.
Can flexible couplings be used in both horizontal and vertical shaft arrangements?
Yes, flexible couplings can be used in both horizontal and vertical shaft arrangements. The design of flexible couplings allows them to accommodate misalignment and compensate for angular, parallel, and axial displacements between the shafts, making them suitable for various shaft orientations.
Horizontal Shaft Arrangements:
In horizontal shaft arrangements, where the shafts are parallel to the ground or horizontal plane, flexible couplings are commonly used to connect two rotating shafts. These couplings help transmit torque from one shaft to another while accommodating any misalignment that may occur during operation. Horizontal shaft arrangements are common in applications such as pumps, compressors, conveyors, and industrial machinery.
Vertical Shaft Arrangements:
In vertical shaft arrangements, where the shafts are perpendicular to the ground or vertical plane, flexible couplings are also applicable. Vertical shafts often require couplings that can handle the additional weight and forces resulting from gravity. Flexible couplings designed for vertical applications can support the weight of the rotating equipment while allowing for some axial movement to accommodate thermal expansion or other displacements. Vertical shaft arrangements are commonly found in applications such as pumps, gearboxes, turbines, and some marine propulsion systems.
Considerations for Vertical Shaft Arrangements:
When using flexible couplings in vertical shaft arrangements, there are a few additional considerations to keep in mind:
- Thrust Load: Vertical shafts can generate thrust loads, especially in upward or downward direction. The flexible coupling should be selected based on its capacity to handle both radial and axial loads to accommodate these forces.
- Lubrication: Some vertical couplings may require additional lubrication to ensure smooth operation and reduce wear, particularly if they are exposed to high axial loads or extended vertical shafts.
- Support and Bearing: Proper support and bearing arrangements for the vertical shaft are essential to prevent excessive shaft deflection and ensure the flexible coupling functions correctly.
Overall, flexible couplings are versatile and adaptable to various shaft orientations, providing efficient power transmission and misalignment compensation. Whether in horizontal or vertical arrangements, using the appropriate flexible coupling design and considering the specific application requirements will help ensure reliable and efficient operation.
editor by CX 2023-08-17